Reprint

ISSN 0973-9424

INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES AND ENGINEERING APPLICATIONS

(IJMSEA)

www.ascent-journals.com

International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 15 No. I (June, 2021), pp. 19-25

SUPER RADIAL SYMMETRIC *n*-SIGRAPHS

R. KEMPARAJU

Department of Mathematics, Government College for Women Chintamani-563 125, India.

Abstract

An *n*-tuple $(a_1, a_2, ..., a_n)$ is symmetric, if $a_k = a_{n-k+1}, 1 \le k \le n$. Let $H_n = \{(a_1, a_2, ..., a_n) : a_k \in \{+, -\}, a_k = a_{n-k+1}, 1 \le k \le n\}$ be the set of all symmetric *n*-tuples. A symmetric *n*-sigraph (symmetric *n*-marked graph) is an ordered pair $S_n = (G, \sigma)$ ($S_n = (G, \mu)$), where G = (V, E) is a graph called the underlying graph of S_n and $\sigma : E \to H_n$ ($\mu : V \to H_n$) is a function. In this paper, we introduced a new notion super radial symmetric *n*-sigraph of a symmetric *n*-sigraph and its properties are obtained. Also, we obtained the structural characterization of super radial symmetric *n*-signed graphs.

1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in graph theory the reader is refer to [1]. We consider only finite, simple graphs free from self-loops.

Key Words : Symmetric n-sigraphs, Symmetric n-marked graphs, Balance, Switching, Super radial symmetric n-sigraphs, Complementation.

2020 AMS Subject Classification : 05C22

© http://www.ascent-journals.com

Let $n \ge 1$ be an integer. An *n*-tuple $(a_1, a_2, ..., a_n)$ is symmetric, if $a_k = a_{n-k+1}, 1 \le k \le n$. Let $H_n = \{(a_1, a_2, ..., a_n) : a_k \in \{+, -\}, a_k = a_{n-k+1}, 1 \le k \le n\}$ be the set of all symmetric *n*-tuples. Note that H_n is a group under coordinate wise multiplication, and the order of H_n is 2^m , where $m = \lceil \frac{n}{2} \rceil$.

A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_n = (G, \sigma)$ $(S_n = (G, \mu))$, where G = (V, E) is a graph called the *underlying graph* of S_n and $\sigma : E \to H_n$ ($\mu : V \to H_n$) is a function.

In this paper by an *n*-tuple/*n*-sigraph/*n*-marked graph we always mean a symmetric *n*-tuple/symmetric *n*-sigraph/symmetric *n*-marked graph.

An *n*-tuple $(a_1, a_2, ..., a_n)$ is the *identity n*-tuple, if $a_k = +$, for $1 \le k \le n$, otherwise it is a *non-identity n*-tuple. In an *n*-sigraph $S_n = (G, \sigma)$ an edge labelled with the identity *n*-tuple is called an *identity edge*, otherwise it is a *non-identity edge*.

Further, in an *n*-sigraph $S_n = (G, \sigma)$, for any $A \subseteq E(G)$ the *n*-tuple $\sigma(A)$ is the product of the *n*-tuples on the edges of A.

In [8], the authors defined two notions of balance in *n*-sigraph $S_n = (G, \sigma)$ as follows (See also R. Rangarajan and P.S.K.Reddy [4]).

Definition : Let $S_n = (G, \sigma)$ be an *n*-sigraph. Then,

- (i) S_n is *identity balanced* (or *i-balanced*), if product of *n*-tuples on each cycle of S_n is the identity *n*-tuple, and
- (ii) S_n is balanced, if every cycle in S_n contains an even number of non-identity edges.

Note: An *i*-balanced *n*-sigraph need not be balanced and conversely. The following characterization of *i*-balanced *n*-sigraphs is obtained in [8].

Theorem 1.1 (E. Sampathkumar et al. [8]) : An *n*-sigraph $S_n = (G, \sigma)$ is ibalanced if, and only if, it is possible to assign *n*-tuples to its vertices such that the *n*-tuple of each edge uv is equal to the product of the *n*-tuples of u and v.

In [8], the authors also have defined switching and cycle isomorphism of an *n*-sigraph $S_n = (G, \sigma)$ as follows: (See also [3], [5], [7], [10-20]).

Let $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$, be two *n*-sigraphs. Then S_n and S'_n are said to be *isomorphic*, if there exists an isomorphism $\phi : G \to G'$ such that if uv is an edge in S_n with label $(a_1, a_2, ..., a_n)$ then $\phi(u)\phi(v)$ is an edge in S'_n with label $(a_1, a_2, ..., a_n)$. Given an *n*-marking μ of an *n*-sigraph $S_n = (G, \sigma)$, switching S_n with respect to μ is the operation of changing the *n*-tuple of every edge uv of S_n by $\mu(u)\sigma(uv)\mu(v)$. The *n*sigraph obtained in this way is denoted by $S_{\mu}(S_n)$ and is called the μ -switched *n*-sigraph or just switched *n*-sigraph.

Further, an *n*-sigraph S_n switches to *n*-sigraph S'_n (or that they are switching equivalent to each other), written as $S_n \sim S'_n$, whenever there exists an *n*-marking of S_n such that $S_{\mu}(S_n) \cong S'_n$.

Two *n*-sigraphs $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$ are said to be *cycle isomorphic*, if there exists an isomorphism $\phi : G \to G'$ such that the *n*-tuple $\sigma(C)$ of every cycle C in S_n equals to the *n*-tuple $\sigma(\phi(C))$ in S'_n .

We make use of the following known result (see [8]).

Theorem 1.2 (E. Sampathkumar et al. [8]) : Given a graph G, any two *n*-sigraphs with G as underlying graph are switching equivalent if, and only if, they are cycle isomorphic.

Let $S_n = (G, \sigma)$ be an *n*-sigraph. Consider the *n*-marking μ on vertices of *S* defined as follows: each vertex $v \in V$, $\mu(v)$ is the product of the *n*-tuples on the edges incident at *v*. Complement of *S* is an *n*-sigraph $\overline{S_n} = (\overline{G}, \sigma')$, where for any edge $e = uv \in \overline{G}$, $\sigma'(uv) = \mu(u)\mu(v)$. Clearly, $\overline{S_n}$ as defined here is an *i*-balanced *n*-sigraph due to Theorem 1.1.

2. Super Radial *n*-Sigraph of an *n*-Sigraph

In a graph G = (V, E), the distance d(u, v) between a pair of vertices u and v is the length of a shortest path joining them. The eccentricity e(u) of a vertex u is the distance to a vertex farthest from u. The radius r(G) of G is defined by $r(G) = \min\{e(u) : u \in \Gamma\}$ and the diameter d(G) of G is defined by $d(G) = \max\{e(u) : u \in \Gamma\}$. A graph for which r(G) = d(G) is called a *self-centered graph* of radius r(G). A vertex v is called an eccentric vertex of a vertex u if d(u, v) = e(u). A vertex v of G is called an eccentric vertex of G if it is an eccentric vertex of some vertex of G. Let S_i denote the subset of vertices of G whose eccentricity is equal to i.

In [2], the authors introduced a new type of graph called super radial graph. The superradial graph SR(G) of a graph G on the same vertex set of G and two vertices u and v are adjacent in SR(G) if and only if the distance between them is greater than or equal to d(G) - r(G) + 1. If G is disconnected, then two vertices are adjacent in SR(G) if they belong to different components of G.

Motivated by the existing definition of complement of an n-sigraph, we extend the notion of super radial graphs to n-sigraphs as follows:

The super radial n-sigraph $SR(S_n)$ of an n-sigraph $S_n = (G, \sigma)$ is an n-sigraph whose underlying graph is SR(G) and the n-tuple of any edge uv is $SR(S_n)$ is $\mu(u)\mu(v)$, where μ is the canonical n-marking of S_n . Further, an n-sigraph $S_n = (G, \sigma)$ is called super radial n-sigraph, if $S_n \cong SR(S'_n)$ for some n-sigraph S'_n . The following result indicates the limitations of the notion $SR(S_n)$ as introduced above, since the entire class of *i*unbalanced n-sigraphs is forbidden to be super radial n-sigraphs.

Theomre 2.1: For any *n*-sigraph $S_n = (G, \sigma)$, its super radial *n*-sigraph $SR(S_n)$ is *i*-balanced.

Proof: Since the *n*-tuple of any edge uv in $SR(S_n)$ is $\mu(u)\mu(v)$, where μ is the canonical *n*-marking of S_n , by Theorem 1.1, $SR(S_n)$ is *i*-balanced.

For any positive integer k, the k^{th} iterated super radial *n*-sigraph $SR(S_n)$ of S_n is defined as follows:

$$(SR)^0(S_n) = S_n, (SR)^k(S_n) = SR((SR)^{k-1}(S_n)).$$

Corollary 2.2: For any *n*-sigraph $S_n = (G, \sigma)$ and any positive integer k, $(SR)^k(S_n)$ is *i*-balanced.

The following result characterize n-sigraphs which are super radial n-sigraphs.

Theorem 2.3: An *n*-sigraph $S_n = (G, \sigma)$ is a super radial *n*-sigraph if, and only if, S_n is *i*-balanced *n*-sigraph and its underlying graph G is a super radial graph.

Proof: Suppose that S_n is *i*-balanced and G is a SR(G). Then there exists a graph H such that $SR(H) \cong G$. Since S_n is *i*-balanced, by Theorem 1.1, there exists an *n*-marking μ of G such that each edge uv in S_n satisfies $\sigma(uv) = \mu(u)\mu(v)$. Now consider the *n*-sigraph $S'_n = (H, \sigma')$, where for any edge e in H, $\sigma'(e)$ is the *n*-marking of the corresponding vertex in G. Then clearly, $SR(S'_n) \cong S_n$. Hence S_n is a super radial *n*-sigraph.

Conversely, suppose that $S_n = (G, \sigma)$ is a super radial *n*-sigraph. Then there exists an *n*-sigraph $S'_n = (H, \sigma')$ such that $SR(S'_n) \cong S_n$. Hence G is the SR(G) of H and by Theorem 2.1, S_n is *i*-balanced.

In [2], the authors characterize the graphs for which $SR(G) \cong \overline{G}$.

Theorem 2.4: Let G = (V, E) be a graph of order n. Then $SR(G) \cong \overline{G}$ if, and only if, G is a graph with d(G) = r(G) + 1 or G is disconnected in which each component is complete.

In view of the above result, we have the following result that characterizes the family of *n*-sigraphs satisfies $SR(S_n) \sim \overline{S_n}$.

Theorem 2.5: For any *n*-sigraph $S_n = (G, \sigma)$, $SR(S_n) \sim \overline{S_n}$ if, and only if, *G* is a graph with d(G) = r(G) + 1 or *G* is disconnected in which each component is complete. **Proof**: Suppose that $SR(S_n) \sim \overline{S_n}$. Then clearly, $SR(G) \cong \overline{(G)}$. Hence by Theorem 2.4, *G* is a graph with d(G) = r(G) + 1 or *G* is disconnected in which each component is complete.

Conversely, suppose that S_n is an *n*-sigraph whose underlying graph G is a graph with d(G) = r(G) + 1 or G is disconnected in which each component is complete. Then by Theorem 2.4, $SR(G) \cong \overline{(G)}$. Since for any *n*-sigraph S_n , both $SR(S_n)$ and $\overline{(S_n)}$ are *i*-balanced, the result follows by Theorem 1.2.

Let F_{11} and F_{22} denote the set of all connected graphs G for which r(G) = d(G) = 1and r(G) = 2, d(G) = 3 respectively.

The following result characterizes the n-sigraphs which are isomorphic to super radial n-sigraphs. In case of graphs the following result is due to Kathiresan et al. [2].

Theorem 2.6: For any graph G = (V, E), $SR(G) \cong G$ if, and only if, either $G \in F_{11}$ or $G \in F_{22}$ with $G \cong \overline{G}$.

Theorem 2.7: For any *n*-sigraph $S_n = (G, \sigma)$, $S_n \sim SR(S_n)$ if, and only if, S_n is *i*-balanced and the underlying graph G belongs to either F_{11} or F_{22} with Γ is self-complementary.

Proof : Suppose $SR(S_n) \sim S_n$. This implies, $SR(G) \cong G$ and hence by Theorem 2.6, we see that the graph G satisfies the conditions in Theorem 2.6. Now, if S_n is any *n*-sigraph with underlying graph G belongs to either F_{11} or F_{22} with G is self-complementary, Theorem 2.1 implies that $SR(S_n)$ is *i*-balanced and hence if S_n is *i*-unbalanced and its super radial *n*-sigraph $SR(S_n)$ being *i*-balanced can not be switching equivalent to S_n in accordance with Theorem 1.2. Therefore, S_n must be *i*-balanced.

Conversely, suppose that S_n is *i*-balanced *n*-sigraph with the underlying graph G belongs to either F_{11} or F_{22} with G is self-complementary. Then, since $SR(S_n)$ is *i*-balanced as per Theorem 2.1 and since $SR(G) \cong G$ by Theorem 2.6, the result follows from Theorem 1.2 again.

3. Complementation

In this section, we investigate the notion of complementation of a graph whose edges have signs (a *sigraph*) in the more general context of graphs with multiple signs on their edges. We look at two kinds of complementation: complementing some or all of the signs, and reversing the order of the signs on each edge.

For any $m \in H_n$, the *m*-complement of $a = (a_1, a_2, ..., a_n)$ is: $a^m = am$. For any $M \subseteq H_n$, and $m \in H_n$, the *m*-complement of M is $M^m = \{a^m : a \in M\}$.

For any $m \in H_n$, the *m*-complement of an *n*-sigraph $S_n = (G, \sigma)$, written (S_n^m) , is the same graph but with each edge label $a = (a_1, a_2, ..., a_n)$ replaced by a^m .

For an *n*-sigraph $S_n = (G, \sigma)$, the $SR(S_n)$ is *i*-balanced. We now examine, the condition under which *m*-complement of $SR(S_n)$ is *i*-balanced, where for any $m \in H_n$.

Theorem 3.1: Let $S_n = (G, \sigma)$ be an *n*-sigraph. Then, for any $m \in H_n$, if SR(G) is bipartite then $(SR(S_n))^m$ is *i*-balanced.

Proof: Since, by Theorem 2.1, $SR(S_n)$ is *i*-balanced, for each $k, 1 \le k \le n$, the number of *n*-tuples on any cycle C in $SR(S_n)$ whose k^{th} co-ordinate are - is even. Also, since SR(G) is bipartite, all cycles have even length; thus, for each $k, 1 \le k \le n$, the number of *n*-tuples on any cycle C in $SR(S_n)$ whose k^{th} co-ordinate are + is also even. This implies that the same thing is true in any *m*-complement, where for any $m, \in H_n$. Hence $(SR(S_n))^t$ is *i*-balanced.

4. Conclusion

We have introduced a new notion for n-signed graphs called super radial n-sigraph of an n-signed graph. We have proved some results and presented the structural characterization of super radial n-signed graph. There is no structural characterization of super radial graph, but we have obtained the structural characterization of super radial n-signed graph.

References

[1] Harary F., Graph Theory, Addison-Wesley Publishing Co., (1969).

- [2] Kathiresan K. M., Marimuthu G. and Parameswaran C., Characterization of super-radial graphs, Discuss. Math. Graph Theory, 34 (2014), 829-848.
- [3] Lokesha V., Reddy P.S.K. and Vijay S., The triangular line n-sigraph of a symmetric n-sigraph, Advn. Stud. Contemp. Math., 19(1) (2009), 123-129.
- [4] Rangarajan R. and Reddy P.S.K., Notions of balance in symmetric n-sigraphs, Proceedings of the Jangjeon Math. Soc., 11(2) (2008), 145-151.
- [5] RangarajanR., Reddy P.S.K. and Subramanya M. S., Switching Equivalence in Symmetric n-Sigraphs, Adv. Stud. Comtemp. Math., 18(1) (2009), 79-85. R.
- [6] Rangarajan R., Reddy P.S.K. and Soner N. D., Switching equivalence in symmetric n-sigraphs-II, J. Orissa Math. Sco., 28 (1 & 2) (2009), 1-12.
- [7] Rangarajan R., Reddy P.S.K. and Soner N. D., mth Power Symmetric n-Sigraphs, Italian Journal of Pure & Applied 985099211 Mathematics, 29(2012), 87-92.
- [8] Sampathkumar E., Reddy P.S.K. and Subramanya M. S., Jump symmetric nsigraph, Proceedings of the Jangjeon Math. Soc., 11(1) (2008), 89-95.
- [9] Sampathkumar E., Reddy P.S.K., and Subramanya M. S., The Line n-sigraph of a symmetric n-sigraph, Southeast Asian Bull. Math., 34(5) (2010), 953-958.
- [10] Reddy P.S.K. and Prashanth B., Switching equivalence in symmetric n-sigraphs-I, Advances and Applications in Discrete Mathematics, 4(1) (2009), 25-32.
- [11] Reddy P.S.K., Vijay S. and Prashanth B., The edge C₄ n-sigraph of a symmetric n-sigraph, Int. Journal of Math. Sci. & Engg. Appls., 3(2) (2009), 21-27.
- [12] Reddy P.S.K., Lokesha V. and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-II, Proceedings of the Jangjeon Math. Soc., 13(3) (2010), 305-312.
- [13] Reddy P.S.K., Lokesha V. and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-III, Int. J. Open Problems in Computer Science and Mathematics, 3(5) (2010), 172-178.
- [14] Reddy P.S.K., Lokesha V. and Gurunath Rao Vaidya, Switching equivalence in symmetric *n*-sigraphs-III, Int. Journal of Math. Sci. & Engg. Appls., 5(1) (2011), 95-101.
- [15] Reddy P.S.K., Prashanth B. and Kavita. S. Permi, A Note on Switching in Symmetric *n*-Sigraphs, Notes on Number Theory and Discrete Mathematics, 17(3) (2011), 22-25.
- [16] Reddy P.S.K., Geetha M. C. and Rajanna K. R., Switching Equivalence in Symmetric n-Sigraphs-IV, Scientia Magna, 7(3) (2011), 34-38.
- [17] Reddy P.S.K., Nagaraja K. M. and Geetha M. C., The Line n-sigraph of a symmetric n-sigraph-IV, International J. Math. Combin., 1 (2012), 106-112.
- [18] Reddy P.S.K., Geetha M. C. and Rajanna K. R., Switching equivalence in symmetric n-sigraphs-V, International J. Math. Combin., 3 (2012), 58-63.
- [19] Reddy P.S.K., Nagaraja K. M. and Geetha M. C., The Line n-sigraph of a symmetric n-sigraph-V, Kyungpook Mathematical Journal, 54(1) (2014), 95-101.
- [20] Reddy P.S.K., Rajendra R. and Geetha M. C., Boundary n-Signed Graphs, Int. Journal of Math. Sci. & Engg. Appls., 10(2) (2016), 161-168.