International Journal Of Mathematical Sciences And Engineering Applications

(IJMSEA)

International J. of Math. Sci. \& Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 15 No. I (June, 2021), pp. 19-25

SUPER RADIAL SYMMETRIC n-SIGRAPHS

R. KEMPARAJU

Department of Mathematics, Government College for Women

Chintamani-563 125, India.

Abstract

An n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is symmetric, if $a_{k}=a_{n-k+1}, 1 \leq k \leq n$. Let $H_{n}=$ $\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{k} \in\{+,-\}, a_{k}=a_{n-k+1}, 1 \leq k \leq n\right\}$ be the set of all symmetric n-tuples. A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_{n}=(G, \sigma)\left(S_{n}=(G, \mu)\right)$, where $G=(V, E)$ is a graph called the underlying graph of S_{n} and $\sigma: E \rightarrow H_{n}\left(\mu: V \rightarrow H_{n}\right)$ is a function. In this paper, we introduced a new notion super radial symmetric n-sigraph of a symmetric n-sigraph and its properties are obtained. Also, we obtained the structural characterization of super radial symmetric n-signed graphs.

1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in graph theory the reader is refer to [1]. We consider only finite, simple graphs free from self-loops.

Key Words : Symmetric n-sigraphs, Symmetric n-marked graphs, Balance, Switching, Super radial symmetric n-sigraphs, Complementation.

2020 AMS Subject Classification : 05C22
(c) http: //www.ascent-journals.com

Let $n \geq 1$ be an integer. An n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is symmetric, if $a_{k}=a_{n-k+1}, 1 \leq$ $k \leq n$. Let $H_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{k} \in\{+,-\}, a_{k}=a_{n-k+1}, 1 \leq k \leq n\right\}$ be the set of all symmetric n-tuples. Note that H_{n} is a group under coordinate wise multiplication, and the order of H_{n} is 2^{m}, where $m=\left\lceil\frac{n}{2}\right\rceil$.
A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_{n}=(G, \sigma)$ ($S_{n}=(G, \mu)$), where $G=(V, E)$ is a graph called the underlying graph of S_{n} and $\sigma: E \rightarrow H_{n}\left(\mu: V \rightarrow H_{n}\right)$ is a function.
In this paper by an n-tuple/n-sigraph $/ n$-marked graph we always mean a symmetric n-tuple/symmetric n-sigraph/symmetric n-marked graph.
An n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the identity n-tuple, if $a_{k}=+$, for $1 \leq k \leq n$, otherwise it is a non-identity n-tuple. In an n-sigraph $S_{n}=(G, \sigma)$ an edge labelled with the identity n-tuple is called an identity edge, otherwise it is a non-identity edge.
Further, in an n-sigraph $S_{n}=(G, \sigma)$, for any $A \subseteq E(G)$ the n-tuple $\sigma(A)$ is the product of the n-tuples on the edges of A.

In [8], the authors defined two notions of balance in n-sigraph $S_{n}=(G, \sigma)$ as follows (See also R. Rangarajan and P.S.K.Reddy [4]).
Definition : Let $S_{n}=(G, \sigma)$ be an n-sigraph. Then,
(i) S_{n} is identity balanced (or i-balanced), if product of n-tuples on each cycle of S_{n} is the identity n-tuple, and
(ii) S_{n} is balanced, if every cycle in S_{n} contains an even number of non-identity edges.

Note: An i-balanced n-sigraph need not be balanced and conversely. The following characterization of i-balanced n-sigraphs is obtained in [8].
Theorem 1.1 (E. Sampathkumar et al. [8]) : An n-sigraph $S_{n}=(G, \sigma)$ is ibalanced if, and only if, it is possible to assign n-tuples to its vertices such that the n-tuple of each edge $u v$ is equal to the product of the n-tuples of u and v.
In [8], the authors also have defined switching and cycle isomorphism of an n-sigraph $S_{n}=(G, \sigma)$ as follows: (See also [3], [5], [7], [10-20]).
Let $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$, be two n-sigraphs. Then S_{n} and S_{n}^{\prime} are said to be isomorphic, if there exists an isomorphism $\phi: G \rightarrow G^{\prime}$ such that if $u v$ is an edge in S_{n} with label $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ then $\phi(u) \phi(v)$ is an edge in S_{n}^{\prime} with label $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

Given an n-marking μ of an n-sigraph $S_{n}=(G, \sigma)$, switching S_{n} with respect to μ is the operation of changing the n-tuple of every edge $u v$ of S_{n} by $\mu(u) \sigma(u v) \mu(v)$. The n sigraph obtained in this way is denoted by $\mathcal{S}_{\mu}\left(S_{n}\right)$ and is called the μ-switched n-sigraph or just switched n-sigraph.

Further, an n-sigraph S_{n} switches to n-sigraph S_{n}^{\prime} (or that they are switching equivalent to each other), written as $S_{n} \sim S_{n}^{\prime}$, whenever there exists an n-marking of S_{n} such that $\mathcal{S}_{\mu}\left(S_{n}\right) \cong S_{n}^{\prime}$.
Two n-sigraphs $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ are said to be cycle isomorphic, if there exists an isomorphism $\phi: G \rightarrow G^{\prime}$ such that the n-tuple $\sigma(C)$ of every cycle C in S_{n} equals to the n-tuple $\sigma(\phi(C))$ in S_{n}^{\prime}.
We make use of the following known result (see [8]).
Theorem 1.2 (E. Sampathkumar et al. [8]) : Given a graph G, any two n-sigraphs with G as underlying graph are switching equivalent if, and only if, they are cycle isomorphic.
Let $S_{n}=(G, \sigma)$ be an n-sigraph. Consider the n-marking μ on vertices of S defined as follows: each vertex $v \in V, \mu(v)$ is the product of the n-tuples on the edges incident at v. Complement of S is an n-sigraph $\overline{S_{n}}=\left(\bar{G}, \sigma^{\prime}\right)$, where for any edge $e=u v \in \bar{G}$, $\sigma^{\prime}(u v)=\mu(u) \mu(v)$. Clearly, $\overline{S_{n}}$ as defined here is an i-balanced n-sigraph due to Theorem 1.1.

2. Super Radial n-Sigraph of an n-Sigraph

In a graph $G=(V, E)$, the distance $d(u, v)$ between a pair of vertices u and v is the length of a shortest path joining them. The eccentricity $e(u)$ of a vertex u is the distance to a vertex farthest from u. The radius $r(G)$ of G is defined by $r(G)=\min \{e(u): u \in \Gamma\}$ and the diameter $d(G)$ of G is defined by $d(G)=\max \{e(u): u \in \Gamma\}$. A graph for which $r(G)=d(G)$ is called a self-centered graph of radius $r(G)$. A vertex v is called an eccentric vertex of a vertex u if $d(u, v)=e(u)$. A vertex v of G is called an eccentric vertex of G if it is an eccentric vertex of some vertex of G. Let S_{i} denote the subset of vertices of G whose eccentricity is equal to i.

In [2], the authors introduced a new type of graph called super radial graph. The superradial graph $S R(G)$ of a graph G on the same vertex set of G and two vertices u and v are adjacent in $S R(G)$ if and only if the distance between them is greater than or equal
to $d(G)-r(G)+1$. If G is disconnected, then two vertices are adjacent in $S R(G)$ if they belong to different components of G.

Motivated by the existing definition of complement of an n-sigraph, we extend the notion of super radial graphs to n-sigraphs as follows:

The super radial n-sigraph $S R\left(S_{n}\right)$ of an n-sigraph $S_{n}=(G, \sigma)$ is an n-sigraph whose underlying graph is $S R(G)$ and the n-tuple of any edge $u v$ is $S R\left(S_{n}\right)$ is $\mu(u) \mu(v)$, where μ is the canonical n-marking of S_{n}. Further, an n-sigraph $S_{n}=(G, \sigma)$ is called super radial n-sigraph, if $S_{n} \cong S R\left(S_{n}^{\prime}\right)$ for some n-sigraph S_{n}^{\prime}. The following result indicates the limitations of the notion $S R\left(S_{n}\right)$ as introduced above, since the entire class of i unbalanced n-sigraphs is forbidden to be super radial n-sigraphs.
Theomre 2.1 : For any n-sigraph $S_{n}=(G, \sigma)$, its super radial n-sigraph $S R\left(S_{n}\right)$ is i-balanced.

Proof : Since the n-tuple of any edge $u v$ in $S R\left(S_{n}\right)$ is $\mu(u) \mu(v)$, where μ is the canonical n-marking of S_{n}, by Theorem 1.1, $S R\left(S_{n}\right)$ is i-balanced.
For any positive integer k, the $k^{t h}$ iterated super radial n-sigraph $S R\left(S_{n}\right)$ of S_{n} is defined as follows:

$$
(S R)^{0}\left(S_{n}\right)=S_{n},(S R)^{k}\left(S_{n}\right)=S R\left((S R)^{k-1}\left(S_{n}\right)\right)
$$

Corollary 2.2 : For any n-sigraph $S_{n}=(G, \sigma)$ and any positive integer $k,(S R)^{k}\left(S_{n}\right)$ is i-balanced.

The following result characterize n-sigraphs which are super radial n-sigraphs.
Theorem 2.3: An n-sigraph $S_{n}=(G, \sigma)$ is a super radial n-sigraph if, and only if, S_{n} is i-balanced n-sigraph and its underlying graph G is a super radial graph.
Proof : Suppose that S_{n} is i-balanced and G is a $S R(G)$. Then there exists a graph H such that $S R(H) \cong G$. Since S_{n} is i-balanced, by Theorem 1.1, there exists an n marking μ of G such that each edge $u v$ in S_{n} satisfies $\sigma(u v)=\mu(u) \mu(v)$. Now consider the n-sigraph $S_{n}^{\prime}=\left(H, \sigma^{\prime}\right)$, where for any edge e in $H, \sigma^{\prime}(e)$ is the n-marking of the corresponding vertex in G. Then clearly, $S R\left(S_{n}^{\prime}\right) \cong S_{n}$. Hence S_{n} is a super radial n-sigraph.

Conversely, suppose that $S_{n}=(G, \sigma)$ is a super radial n-sigraph. Then there exists an n-sigraph $S_{n}^{\prime}=\left(H, \sigma^{\prime}\right)$ such that $S R\left(S_{n}^{\prime}\right) \cong S_{n}$. Hence G is the $S R(G)$ of H and by Theorem 2.1, S_{n} is i-balanced.

In [2], the authors characterize the graphs for which $S R(G) \cong \bar{G}$.
Theorem 2.4: Let $G=(V, E)$ be a graph of order n. Then $S R(G) \cong \bar{G}$ if, and only if, G is a graph with $d(G)=r(G)+1$ or G is disconnected in which each component is complete.

In view of the above result, we have the following result that characterizes the family of n-sigraphs satisfies $S R\left(S_{n}\right) \sim \overline{S_{n}}$.
Theorem 2.5 : For any n-sigraph $S_{n}=(G, \sigma), S R\left(S_{n}\right) \sim \overline{S_{n}}$ if, and only if, G is a graph with $d(G)=r(G)+1$ or G is disconnected in which each component is complete. Proof : Suppose that $S R\left(S_{n}\right) \sim \overline{S_{n}}$. Then clearly, $\left.S R(G) \cong \overline{(} G\right)$. Hence by Theorem 2.4, G is a graph with $d(G)=r(G)+1$ or G is disconnected in which each component is complete.
Conversely, suppose that S_{n} is an n-sigraph whose underlying graph G is a graph with $d(G)=r(G)+1$ or G is disconnected in which each component is complete. Then by Theorem 2.4, $S R(G) \cong \overline{(} G)$. Since for any n-sigraph S_{n}, both $S R\left(S_{n}\right)$ and $\left.\overline{(} S_{n}\right)$ are i-balanced, the result follows by Theorem 1.2.
Let F_{11} and F_{22} denote the set of all connected graphs G for which $r(G)=d(G)=1$ and $r(G)=2, d(G)=3$ respectively.

The following result characterizes the n-sigraphs which are isomorphic to super radial n-sigraphs. In case of graphs the following result is due to Kathiresan et al. [2].
Theorem 2.6: For any graph $G=(V, E), S R(G) \cong G$ if, and only if, either $G \in F_{11}$ or $G \in F_{22}$ with $G \cong \bar{G}$.

Theorem 2.7: For any n-sigraph $S_{n}=(G, \sigma), S_{n} \sim S R\left(S_{n}\right)$ if, and only if, S_{n} is i-balanced and the underlying graph G belongs to either F_{11} or F_{22} with Γ is selfcomplementary.
Proof : Suppose $S R\left(S_{n}\right) \sim S_{n}$. This implies, $S R(G) \cong G$ and hence by Theorem 2.6, we see that the graph G satisfies the conditions in Theorem 2.6. Now, if S_{n} is any n-sigraph with underlying graph G belongs to either F_{11} or F_{22} with G is selfcomplementary, Theorem 2.1 implies that $S R\left(S_{n}\right)$ is i-balanced and hence if S_{n} is i unbalanced and its super radial n-sigraph $S R\left(S_{n}\right)$ being i-balanced can not be switching equivalent to S_{n} in accordance with Theorem 1.2. Therefore, S_{n} must be i-balanced.

Conversely, suppose that S_{n} is i-balanced n-sigraph with the underlying graph G belongs to either F_{11} or F_{22} with G is self-complementary. Then, since $S R\left(S_{n}\right)$ is i-balanced
as per Theorem 2.1 and since $S R(G) \cong G$ by Theorem 2.6, the result follows from Theorem 1.2 again.

3. Complementation

In this section, we investigate the notion of complementation of a graph whose edges have signs (a sigraph) in the more general context of graphs with multiple signs on their edges. We look at two kinds of complementation: complementing some or all of the signs, and reversing the order of the signs on each edge.
For any $m \in H_{n}$, the m-complement of $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is: $a^{m}=a m$. For any $M \subseteq H_{n}$, and $m \in H_{n}$, the m-complement of M is $M^{m}=\left\{a^{m}: a \in M\right\}$.
For any $m \in H_{n}$, the m-complement of an n-sigraph $S_{n}=(G, \sigma)$, written $\left(S_{n}^{m}\right)$, is the same graph but with each edge label $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ replaced by a^{m}.

For an n-sigraph $S_{n}=(G, \sigma)$, the $S R\left(S_{n}\right)$ is i-balanced. We now examine, the condition under which m-complement of $\mathcal{S R}\left(S_{n}\right)$ is i-balanced, where for any $m \in H_{n}$.
Theorem 3.1: Let $S_{n}=(G, \sigma)$ be an n-sigraph. Then, for any $m \in H_{n}$, if $S R(G)$ is bipartite then $\left(S R\left(S_{n}\right)\right)^{m}$ is i-balanced.

Proof : Since, by Theorem 2.1, $S R\left(S_{n}\right)$ is i-balanced, for each $k, 1 \leq k \leq n$, the number of n-tuples on any cycle C in $S R\left(S_{n}\right)$ whose $k^{t h}$ co-ordinate are - is even. Also, since $S R(G)$ is bipartite, all cycles have even length; thus, for each $k, 1 \leq k \leq n$, the number of n-tuples on any cycle C in $S R\left(S_{n}\right)$ whose $k^{t h}$ co-ordinate are + is also even. This implies that the same thing is true in any m-complement, where for any $m, \in H_{n}$. Hence $\left(S R\left(S_{n}\right)\right)^{t}$ is i-balanced.

4. Conclusion

We have introduced a new notion for n-signed graphs called super radial n-sigraph of an n-signed graph. We have proved some results and presented the structural characterization of super radial n-signed graph. There is no structural characterization of super radial graph, but we have obtained the structural characterization of super radial n-signed graph.

References

[1] Harary F., Graph Theory, Addison-Wesley Publishing Co., (1969).
[2] Kathiresan K. M., Marimuthu G. and Parameswaran C., Characterization of super-radial graphs, Discuss. Math. Graph Theory, 34 (2014), 829-848.
[3] Lokesha V., Reddy P.S.K. and Vijay S., The triangular line n-sigraph of a symmetric n-sigraph, Advn. Stud. Contemp. Math., 19(1) (2009), 123-129.
[4] Rangarajan R. and Reddy P.S.K., Notions of balance in symmetric n-sigraphs, Proceedings of the Jangjeon Math. Soc., 11(2) (2008), 145-151.
[5] RangarajanR., Reddy P.S.K. and Subramanya M. S., Switching Equivalence in Symmetric n-Sigraphs, Adv. Stud. Comtemp. Math., 18(1) (2009), 79-85. R.
[6] Rangarajan R., Reddy P.S.K. and Soner N. D., Switching equivalence in symmetric n-sigraphs-II, J. Orissa Math. Sco., 28 (1 \& 2) (2009), 1-12.
[7] Rangarajan R., Reddy P.S.K. and Soner N. D., $m^{\text {th }}$ Power Symmetric n-Sigraphs, Italian Journal of Pure \& Applied 985099211 Mathematics, 29(2012), 87-92.
[8] Sampathkumar E., Reddy P.S.K. and Subramanya M. S., Jump symmetric nsigraph, Proceedings of the Jangjeon Math. Soc., 11(1) (2008), 89-95.
[9] Sampathkumar E., Reddy P.S.K., and Subramanya M. S., The Line n-sigraph of a symmetric n-sigraph, Southeast Asian Bull. Math., 34(5) (2010), 953-958.
[10] Reddy P.S.K. and Prashanth B., Switching equivalence in symmetric n-sigraphsI, Advances and Applications in Discrete Mathematics, 4(1) (2009), 25-32.
[11] Reddy P.S.K., Vijay S. and Prashanth B., The edge $C_{4} n$-sigraph of a symmetric n-sigraph, Int. Journal of Math. Sci. \& Engg. Appls., 3(2) (2009), 21-27.
[12] Reddy P.S.K., Lokesha V. and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-II, Proceedings of the Jangjeon Math. Soc., 13(3) (2010), 305-312.
[13] Reddy P.S.K., Lokesha V. and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-III, Int. J. Open Problems in Computer Science and Mathematics, 3(5) (2010), 172-178.
[14] Reddy P.S.K., Lokesha V. and Gurunath Rao Vaidya, Switching equivalence in symmetric n-sigraphs-III, Int. Journal of Math. Sci. \& Engg. Appls., 5(1) (2011), 95-101.
[15] Reddy P.S.K., Prashanth B. and Kavita. S. Permi, A Note on Switching in Symmetric n-Sigraphs, Notes on Number Theory and Discrete Mathematics, 17(3) (2011), 22-25.
[16] Reddy P.S.K., Geetha M. C. and Rajanna K. R., Switching Equivalence in Symmetric n-Sigraphs-IV, Scientia Magna, 7(3) (2011), 34-38.
[17] Reddy P.S.K., Nagaraja K. M. and Geetha M. C., The Line n-sigraph of a symmetric n-sigraph-IV, International J. Math. Combin., 1 (2012), 106-112.
[18] Reddy P.S.K., Geetha M. C. and Rajanna K. R., Switching equivalence in symmetric n-sigraphs-V, International J. Math. Combin., 3 (2012), 58-63.
[19] Reddy P.S.K., Nagaraja K. M. and Geetha M. C., The Line n-sigraph of a symmetric n-sigraph-V, Kyungpook Mathematical Journal, 54(1) (2014), 95101.
[20] Reddy P.S.K., Rajendra R. and Geetha M. C., Boundary n-Signed Graphs, Int. Journal of Math. Sci. \& Engg. Appls., 10(2) (2016), 161-168.

